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Abstract
A unified integrable system, generating a new series of interacting matter–
radiation models with interatomic coupling and different atomic frequencies,
is constructed and exactly solved through an algebraic Bethe ansatz. Novel
features in Rabi oscillation and vacuum Rabi splitting are shown on the example
of an integrable two-atom Buck–Sukumar model with resolution of some
important controversies in the Bethe ansatz solution including its possible
degeneracy for such models.

PACS numbers: 02.30.Ik, 42.50.Pq, 03.65.Fd, 32.80.−t

The basic physics underlying a variety of important phenomena in interacting matter–radiation
(MR) systems, like those in quantum optics induced by resonance interaction between an atom
and a quantized laser field, in cavity QED [1, 2], in a trapped ion interacting with its centre of
mass motion irradiated by a laser beam [3, 4] etc, seems to be nicely captured by simple models
such as Jaynes–Cummings (JC) [5], Buck–Sukumar (BS) [6] and some of their extensions [7].
Many theoretical predictions based on these models, such as vacuum Rabi splitting (VRS)
[2, 8], Rabi oscillation and its quantum collapse and revival [1] etc have been verified in maser
and laser experiments. However, for describing physical situations more accurately one has
to look for further generalizations of the basic models, such as q-deformed BS and JC models
[15, 16], trapped ion (TI) with nonlinear coupling [4, 9], multi-atom models [2, 9, 10] etc.
Nevertheless, while the exact solutions for the JC and the BS models together with their simple
multi-atom extensions are known [11–13], the same is no longer true for most of the above
generalizations. Moreover, while in known multi-atomic MR models the atoms interact only
via the oscillator mode [12, 13] with coinciding atomic frequencies (AF), integrable models
with explicit inter-atomic couplings have not been proposed. Likewise, though q-deformation,
which physically signifies the introduction of anisotropy together with specific nonlinearity
into the system, was considered for a few MR models [15, 16], their multi-atom and integrable
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variants are not known. Therefore, it is indeed a challenge to find a scheme for generating
integrable MR models with the desired properties.

To meet this challenge we construct a general integrable system based on the ancestor
Lax operator of [14] and generate in a unified way a series of integrable multi-atom MR
models with explicit inter-atomic interactions and nondegenerate AF. This includes such new
generalizations for JC, BS, TI, models and discovers important integrable q-deformations
such as qBS, qJC, qTI etc. It is worth noting that our integrable TI model exhibits full
exponential nonlinearity without any approximation and multi-atom qBS and qJC models
involve quantum group spin operators. Moreover, since our construction is based on a general
Yang–Baxter (YB) algebra, together with the generation of various models at its different
realizations, we can solve them exactly in a unified way through an algebraic Bethe ansatz
(BA). Our strategy of construction is to start with a Lax operator by taking it as a combination
T (λ) = Ls(λ)

∏Na

j LS
j (λ), with Ls(λ) linked with the ancestor model of [14] and the

Na-number of LS
j (λ) related to the spin model [12]. By construction it must satisfy the YB

equation R(λ−µ)T (λ)⊗T (µ) = (I ⊗T (µ))(T (λ)⊗I )R(λ−µ), with a mutually commuting
set of conserved operators obtained from the expansion τ(λ) = Tr T (λ) = ∑

a Caλ
a [17].

For standard MR models, as we will see below, the Lax operators are rational type linked with
the simplest quantum R-matrix of the xxx spin chain [17], while for q-deformed models they
are trigonometric type related to the R-matrix of the xxz chain [18]. We concentrate first on
standard MR models and recall that in the rational case the 2 × 2 ancestor Lax operator may
be given as

Ls(λ) =
(

c0
1(λ + s3) + c1

1 s−

s+ c0
2(λ − s3) − c1

2

)
(1)

with operators s satisfying a quadratic algebra

[s+, s−] = 2m+s3 + m− [s3, s±] = ±s± [m±, ·] = 0. (2)

The central elements m± are expressed through arbitrary parameters appearing in (1) as
m+ = c0

1c
0
2,m

− = c1
1c

0
2 + c0

1c
1
2 and as is easy to see, their different choice reduces (2) to

different algebras:

(i) su(u), at m+ = 1,m− = 0 (ii) su(1, 1), at m+ = −1,m− = 0

(iii) bosonic, at m+ = 0,m− = −1 (iv) canonical, at m+ = m− = 0
(3)

and the corresponding limits yield from (1) the respective Lax operators. In case (i), (1)
reduces simply to the spin Lax operator

LS
j (λ) =

(
λ + Sz

j + cj S−
j

S+
j λ − Sz

j + cj

)
. (4)

Our Lax operator constructed as above would generate the set of all commuting conserved
operators, with higher ones containing increasingly higher many-body interactions. The
simplest among them is CNa

= s3 +
∑Na

j Sz
j , while the next in the set αCNa−1 may be defined
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as the Hamiltonian of our unified MR system:

HMR = Hd + HSs + HSS

Hd = ωf s3 +
Na∑
j

ωajS
z
j

HSs = α

Na∑
j

(
s+S−

j + s−S+
j +

(
c0

1 + c0
2

)
s3Sz

j

)
HSS = α

∑
i<j

((
c0

1 + c0
2

)
Sz

i S
z
j + c0

1S
−
i S+

j + c0
2S

+
i S−

j

)
.

(5)

Here HSs describes matter–radiation, while HSS , matter–matter interactions. Sj , j =
1, 2, . . . , Na stand for an array of Na atoms, each with 2s + 1 levels and satisfy the su(2)

algebra. s on the other hand signifies a radiation or a vibration mode and satisfies more general
algebra (2). In (5) the radiation frequency ωf and the atomic frequencies ωaj , j = 1, 2, . . . , Na

are defined through inhomogeneous parameters of the Lax operator as

ωf =
∑

j

wj wj = α
(
c0

1 − c0
2

)
cj ωaj = ωf − wj + α

(
c1

1 + c1
2

)
. (6)

Remarkably, the general model (5) reduces to a new series of integrable multi-atom BS,
JC and TI models in a unified way at the limits (ii), (iii) and (iv) of (3). For example, case (ii)
with the choice

c0
1 = −c0

2 = 1, c1
1 = c1

2 ≡ c (7)

yields from (5) the model

HBS = ωf s3 +
Na∑
j

(
ωajS

z
j + α

(
s+S−

j + s−S+
j

))
+ α

Na∑
i<j

(
S−

i S+
j − S+

i S−
j

)
(8)

which with a bosonic realization of su(1, 1): s+ = √
Nb†, s− = b

√
N, s3 = N + 1

2 and the

spin-s operator �S = 1
2

∑2s
k �σk , would represent a new integrable multi-atom BS model with

inter-atomic interactions and different atomic frequencies. Note that at Na = 1, when matter–
matter interactions vanish and all AF coincide, (8) recovers the known model [13]. However,
we solve below exactly through BA the more general case with nonvanishing interatomic
couplings and all different AF: ωaj , as defined in (6).

Similarly, a new integrable multi-atom JC model with matter–matter coupling is obtained
from the same (5) under reduction (iii), consistent with c0

1 = α, c0
2 = 0, c1

1 ≡ c, c1
2 = −α−1

and bosonic realization s− = b, s+ = b†, s3 = b†b. We do not present here the explicit form of
this easily derivable Hamiltonian, which yields the known model [12] only at Na = 1, when
interatomic couplings vanish and all AF become degenerate.

We can generate an integrable TI model with interatomic interactions, again from the same
MR model (5) at reduction (iv), by fixing the parameter values as c0

1 = −1, c1
1 ≡ c, c0

2 = c1
2 = 0

and considering consistent realization through canonical variables as s± = e∓ix, s3 = p + x.
We present here only its Na = 1 form by a suitable combination with the other conserved
quantity C1:

HTI = (ωa − ωf )Sz + Sz2 + α(e−ixS+ + eixS−) + Hxp (9)

with Hxp = 1
2 (p2 + x2) + xp, �S = 1

2

∑
k �σk, which is a new integrable multi-atom TI model

with full exponential nonlinearity without approximation.
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For constructing integrable q-deformed MR models the strategy would be the same; only
one has to start now from the trigonometric type ancestor Lax operator involving q-deformed
operators and associated with the xxz R-matrix, the explicit form of which is given in [14].
For simplicity, we present here only the Na = 1 case with the Hamiltonian

HqMR = Hd +
(
s+
q S−

q + s−
q S+

q

)
sin α

Hd = −ic0 cos(αX) + c sin(αX) X = (
s3
q − Sz

q + ω
) (10)

which represents a new class of MR models with Sq belonging to the quantum group Uq(su(2))

and sq to a more general quantum algebra [14]. It is important to note that sq can yield a
variety of q-deformed operators, inducing (10) to generate a number of physically relevant
q-deformed integrable MR models.

For example, an integrable q-deformed BS model may be constructed from (10) at c0 = 0,
by realizing sq through the q-oscillator: s+

q = √
[N ]qb

†
q, s

−
q = bq

√
[N ]q, s3

q = N + 1
2 , and

quantum spin operator Sq by using its co-product [18] : S±
q = ∑s

j q− ∑
k<j σ z

k σ±
j q

∑
l>j σ z

l , Sz =∑s
j σ z

j . Note that at s = 1, we get an integrable version of an earlier model [15].
Similarly the same general model (10) with choice c0 = i, c = 1 and realization

s+
q = b

†
q, s

−
q = bq, s

3 = N yield a new integrable q-deformation of the JC model, while
under reduction c0 = i, c = 0 and the same realization through canonical operators as for
the TI model, it generates an integrable q-deformation of the TI model. By taking higher Na

values multi-atom integrable variants of all the above q-deformed matter–radiation models
can be constructed.

We emphasize that all MR models presented here, similar to their unified construction,
allow their exact BA solutions also in a unified and almost model-independent way. In
the BA formalism the diagonal entries τ(λ) = T11(λ) + T22(λ) produce all conserved
operators, while the off-diagonal elements T21(λ) ≡ B(λ) and T12(λ) ≡ C(λ) act like
creation and annihilation operators of pseudoparticles with the M-particle state defined as
|M〉B = B(λ1) · · · B(λM)|0〉 and the pseudovacuum |0〉 through C(λ)|0〉 = 0. The basic
idea of algebraic BA [17] is to find the eigenvalue solution: τ(λ)|M〉B = �(λ, {λa})|M〉B ,
for which diagonal elements Tii(λ), i = 1, 2 are pushed through the string of B(λa) towards
|0〉, using the commutation relations obtainable from the YB equation. Considering further
the actions T11(λ)|0〉 = α(λ)|0〉, T22(λ)|0〉 = β(λ)|0〉, one arrives finally at the eigenvalue
expression

�(λ, {λa}) = α(λ)

M∏
a=1

f (λ − λa) + β(λ)

M∏
a=1

f (λa − λ) (11)

where f (λ) is defined through the elements of the R-matrix as λ+α
λ

, for the rational and as sin(λ+α)

sin λ

for the trigonometric case. Expanding �(λ, {λa}) in powers of λ we obtain the eigenvalues
for all conserved operators including the Hamiltonian, where the rapidity parameters {λa}
involved can be determined from the Bethe equations

α(λa)

β(λa)
=

∏
b �=a

f (λb − λa)

f (λa − λb)
a = 1, 2, . . . ,M (12)

which follow in turn from the requirement of |M〉B to be an eigenvector. Returning to our
models we find that the major parts in key algebraic BA relations (11) and (12), described
by R-matrix elements f (λ), depend actually on the class to which the models belong, rather
than on an individual model. Therefore, for all standard MR systems including BS, JC and
TI models, f (λ) is given by its same rational form, while for all q-deformed models such as
qBS, qJC, qTI etc, by its trigonometric expression. The only model-dependent parts in these
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Figure 1. Time dependence of transition probability, showing Rabi oscillation at different detuning
points: at (a) resonance, (b) degenerate detuning (c) further detuning with complex conjugate roots.

equations, expressed through α(λ) and β(λ), are determined from our general Lax operator
construction, which for the rational class using (1) and (4) is obtained as

α(λ) = (
c0

1(λ + r) + c1
1

) Na∏
j

(λ − s + cj )

β(λ) = (
c0

1(λ − r) − c1
2

) Na∏
j

(λ + s + cj )

(13)

where r = 〈0|s3|0〉, depends on the particular realization of (2) and s = 〈0|sz|0〉 denotes the
atomic spin. Equation (13) yields easily the needed forms for BS, JC and TI models, at the
corresponding choices of the parameters such as (7), as we have noted above. Similarly, for
q-deformed models the quantum extension of (13) together with the trigonometric form for
f (λ) have to be considered. For the solution of TI and qIT models however one has to adopt a
slightly different approach close to that of the Toda chain [19], since pseudovacuum is difficult
to determine for such models.

For deriving physical consequences from our constructions, we consider the integrable
two-level multi-atom BS model with inter-atomic couplings, by taking spin- 1

2 operator
�Sj = 1

2 �σj in (8). Using the full strength of the BA method exact solutions for this multi-atom
model with arbitrary Na and different ωa can be derived from the same BA relations (11)–(13)
for all excitations, by just tuning the parameters involved to their required reduction (7). We
demonstrate some novel features in Rabi oscillation and VRS by using the BA solutions in
the Na = 2 atom case of (8). The first excited energy spectrum E1 = ωf + 2λ1 linked
with the cubic Bethe equation (12) gives three distinct real roots along the resonance line
ωf = ωa(≡ωa1 = ωa2), resulting in a triplet structure in the VRS with splittings in excitation
spectrum: E1 = 2.02, 3.02, 4.02 for ωf = 3.02, α = 1. Consequently, the Rabi oscillation
becomes involved (see figure 1(a)) with three transition frequencies. For small detuning
δ = ωf − ωa the roots remain real, while at δ = ∓0.30 two of them coincide, collapsing
the Rabi-splitting to the usual doublet. The excitation spectrum correspondingly reduces to
E1 = 2.05, 3.81 (degenerate) at sub-detuning and to E1 = 2.22 (degenerate), 3.99 at super-
detuning points, reducing the Rabi-oscillations to single frequency mode (figure 1(b)). Beyond
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these detuning points two of the roots become complex conjugates, leading to an irregular
Rabi oscillation (figure 1(c)).

Higher excitations for this model as well as its Na-atom extension (8) can be solved exactly
following the standard BA formalism presented above. We explore now some subtle points
and apparent controversies regarding the BA solution of BS models, which also have relevance
for other integrable models. A common belief, though proved only for specific models [20], is
that the degeneracy condition (i.e. λa = λb) for the Bethe states: α(λ1)

β(λ1)
= ±1 cannot be solved

apparently for any integrable model. We however find that for our multi-atom BS model
at the resonance point δ = ωf − ωa = 0, the degeneracy condition, which is equivalent to
α(λ1) = β(λ1) = 0 is indeed fulfilled, yielding a nontrivial solution λ1 = 1

2 (−ωf ± 1), which
recovers as well the known spectrum for the standard BS model: EM = 2M(ωf +λ1) = ME1,

at resonance [6].
Another apparent controversy regarding multi-atom BS models, which is also generic

for many other models but not emphasized properly in the literature, arises due to the fact
that the dimension of the underlying Hilbert space for these models with Na number of two-
level atoms has an upper bound 2Na , for a fixed pseudoparticle number. For the standard
BS model it is just 2. Therefore, the complexity of the problem cannot increase further
for higher excitations with M > Na . For example, in the BS model by diagonalizing the
Hamiltonian directly one can easily get the exact energy spectrum for arbitrary excitation
[6]. However, when we try to solve the same problem through the Bethe ansatz the solution
must become increasingly complicated for higher excitations |M〉B , since one has to find all
M Bethe roots {λa}, a = 1, 2, . . . , M as solutions to general Bethe equations (12), which
is impossible analytically! We resolve this problem in an intriguing way by observing that
Bethe state |M〉B and the energy eigenvalues depend in fact not on M number of roots λa

individually, but only on some symmetric combinations of them and moreover, the number
of these relevant variables does not exceed the dimension of the Hilbert space. For the BS
model for example, we find them to be only two: XM, YM and for deriving them explicitly
we introduce an equivalent set of symmetric Bethe roots through symmetric combinations of
the original M roots1: s1 = ∑

a λa, s2 = ∑
ab = λaλb, . . . , sM = ∏

a λa . Combining suitably
BAE (12) and (11) for the BS model, expressed through symmetric roots we arrive at the
equations

EMXM = 	+XM + MYM EMYM = 	−YM + MXM (14)

where 	± = Mωf ± 1
2δ. On the other hand, expressing the Bethe states through two basic

states of the model we find |M〉B = XM |M,−〉 + YM |M − 1, +〉, i.e. dependent again on the
above two relevant variables only. It is easy to see that the action of the BS Hamiltonian on
this eigenstate also reproduces the same relation (14), we have derived from the BAE. Fixing
ωf = 1 for simplicity, we find these two variables explicitly through symmetric Bethe roots
in the form XM = MsM and YM = −MsM + 1

2δ(sM−1 + · · · + s1 + 1). From the first of the
relations (14) we get the energy spectrum as EM = 	+ + MκM, where κM = YM

XM
and using

both these relations we derive the simple equation Mκ2
M + δκM − M = 0. This quadratic

equation is solved easily to yield EM = Mωf ± (δ2 + M2)
1
2 , recovering the known spectrum

of the BS model in the general δ �= 0 case. Thus through BA we get the explicit result for all
higher excitations, also analytically, resolving the raised controversy. Similar arguments must
hold in the corresponding problem for other models.

Thus we have proposed through general Yang–Baxter algebra a series of new integrable
multi-atom matter–radiation models including q-deformed models and solved them exactly

1 A useful reformulation of Bethe equations achieved through symmetric roots will be presented elsewhere.
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through the Bethe ansatz in a unified way. The integrable trapped ion (TI) and q-deformed
TI models introduced here are new, while q-deformed Jaynes–Cummings (JC) and Buck–
Sukumar (BS) models are multi-atom as well as integrable extensions of earlier models
[15, 16]. The proposed JC and BS models are nontrivial generalizations of well-known
models [12, 13], with the inclusion of inter-atomic interactions and nondegenerate atomic
frequencies. We find that in contrast to the popular belief, the degenerate Bethe states do
exist in the multi-atom BS models at the resonance point. Multi-radiation modes can be
included easily in such models preserving integrability. Identifying the models in real systems
and experimental verification of the related results presented here, especially in many-atom
microlasers [21], would be an important problem.
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